游客
题文

小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体 ACB 是抛物线的一部分,抛物线的顶点 C y 轴上,杯口直径 AB = 4 ,且点 A B 关于 y 轴对称,杯脚高 CO = 4 ,杯高 DO = 8 ,杯底 MN x 轴上.

(1)求杯体 ACB 所在抛物线的函数表达式(不必写出 x 的取值范围);

(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体 A ' CB ' 所在抛物线形状不变,杯口直径 A ' B ' / / AB ,杯脚高 CO 不变,杯深 CD ' 与杯高 OD ' 之比为0.6,求 A ' B ' 的长.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数的应用
登录免费查看答案和解析
相关试题

已知经过四点,一次函数的图象是直线,直线轴交于点

(1)在右边的平面直角坐标系中画出,直线的交点坐标为
(2)若上存在整点(横坐标与纵坐标均为整数的点称为整点),使得为等腰三角形,所有满足条件的点坐标为
(3)将沿轴向右平移个单位时,相切.

如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形.
①若菱形的一个内角为,则该菱形的“接近度”等于
②当菱形的“接近度”等于时,菱形是正方形.

(2)设矩形相邻两条边长分别是),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.

口袋中装有2个小球,它们分别标有数字口袋中装有3个小球,它们分别标有数字.每个小球除数字外都相同.甲、乙两人玩游戏,从两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.

图1是某市2007年2月5日至14日每天最低气温的折线统计图.

(1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;
(2)在这10天中,最低气温的众数是,中位数是,方差是

已知,如图,延长的各边,使得,顺次连接,得到为等边三角形.
求证:(1)
(2)为等边三角形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号