游客
题文

某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:


男生

女生

支持

不支持

支持

不支持

方案一

200人

400人

300人

100人

方案二

350人

250人

150人

250人

假设所有学生对活动方案是否支持相互独立.

(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;

(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;

(Ⅲ)将该校学生支持方案的概率估计值记为 p 0 ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为 p 1 ,试比较 p 0 p 1 的大小.(结论不要求证明)

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

在直角坐标系xOy中,椭圆C的参数方程为(φ为参数,a>b>0),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为ρsin(θ)=m(m为非零数)与ρb.若直线l经过椭圆C的焦点,且与圆O相切,求椭圆C的离心率.

已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且ABCD依逆时针次序排列,点A的极坐标为.
(1)求点ABCD的直角坐标;
(2)设PC1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.

已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1C2交点的极坐标(ρ≥0,0≤θ<2π).

已知矩阵M有特征值λ1=4及对应的一个特征向量e1.求:
(1)矩阵M
(2)曲线5x2+8xy+4y2=1在M的作用下的新曲线方程.

已知矩阵M,△ABC的顶点为A(0,0),B(2,0),C(1,2),求△ABC在矩阵M-1的变换作用下所得△ABC′的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号