游客
题文

在极坐标系中,O为极点,点 M ( ρ 0 , θ 0 ) ( ρ 0 > 0 ) 在曲线 C : ρ = 4 sin θ 上,直线l过点 A ( 4 , 0 ) 且与 OM 垂直,垂足为P.

(1)当 θ 0 = π 3 时,求 ρ 0 l的极坐标方程;

(2)当MC上运动且P在线段OM上时,求P点轨迹的极坐标方程.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。

(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。

设函数(其中).
(1)当时,求函数的单调区间;
(2)当时,求函数上的最大值.

已知圆C的方程为,过点M(2,4)作圆C的两条切线,切点分别为A,B,
直线AB恰好经过椭圆T:(a>b>0)的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l:y=kx+(k>0)与椭圆T相交于P,Q两点,O为坐标原点,求△OPQ面积的最大值.

如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.
(1)当点M是EC中点时,求证:BM//平面ADEF;
(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积

已知等比数列满足的等差中项
(1)求数列的通项公式;(2)若求使成立的正整数的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号