为探究导体电阻大小的影响因素,某同学利用同种合金材料制成的 、 、 三条电阻丝(不考虑温度对电阻的影响)进行实验, 、 长度相同, 、 粗细相同,如图1所示。连接电路,分别接入电阻丝 、 、 ,闭合开关后电流表的三次示数如图2所示。
(1)根据示数可以得出以下结论:
①电阻大小不仅跟导体横截面积有关,还跟导体 有关。
② 电阻丝的阻值最小(选填" "" "" " 。
(2)该同学更换了电源和电流表,添加了电压表和滑动变阻器,设计了图3(甲 所示的电路来测量电阻丝的电阻。
①图3(乙 是根据图3(甲 连接的实物图,请在错误的导线上打" "并连接正确。
②闭合开关后,当滑片 向右移动时,电压表示数 (选填"变大""变小""不变" ;当滑片 移到某一位置时,电压表的示数为 ,电流表的示数如图丙所示,则 ;接着他多次改变滑片位置测量 电阻丝的电阻值,并求出平均值 ,其目的是 ;
③若电源电压为 , 且保持不变,要使图3(乙 连接方式中各电路元件安全,则滑动变阻器的最大值应不小于 。
(2012·济南)在复习“电流的磁场”和“磁场对电流的作用”时,小刚想:“既然通电导体周围存在磁场,磁场又会对通电导体产生力的作用,那么相互靠近的两个通电导体间是否会产生力的作用呢?”
(1)于是,他和小强商议通过实验来研究这一问题.他们找到了两根柔软的导线,相距较近地并排固定在接线板上,实验电路如图甲所示.通过实验观察到的现象如图乙所示.
该试验表明:两个通电导体之间 .
(2)小强认为,如果改变其中一个通电导体的电流方向,则它们之间作用力的方向也会发生改变.
小强这样想的理由是:电流产生的磁场方向是由 的方向决定的,当一个通电导体中电流的方向改变时,它产生的磁场方向也会发生改变;而磁场对通电导体的作用力的方向与 流 的方向和 的方向有关,另一个通电导体中电流的方向不变,但磁场的方向变化了,它受到的磁场力的方向就会改变.
(3)如果开始实验时,小刚和小强没有找到柔软的导线,而是用较硬的普通铝芯电线进行实验,你认为会出现怎样的情况?通过这个问题,你得到了怎样的启示? .
小波小组在探究“通电螺线管的外部磁场”实验中,设计了如图所示电路。实验时,
(1)可通过观察__________________判断通电螺线管的磁极。
(2)如图所示是通电螺线管周网的有机玻璃板上的小磁针分布状态,观察可知通电螺线管的外部磁场与_________的磁场相似。
(3)小波猜想通电螺线管磁场强弱可能与线圈匝数和电流大小都有关。实验中,他将开关S从l换到2上时,调节变阻器的滑片P,再次观察电流表示数及吸引的回形针数目,此时调节滑动变阻器是为了____________________,来研究________________的关系。
(2013·宿迁)如图甲,将玩具电动机、电池、小电灯、开关用导线连接起来.
(1)闭合开关,电动机转动,这是利用通电线圈在 里受力转动的原理工作的;如果想改变电动机的转动方向,我们可以采取的措施是 .
(2)刚闭合开关时,小电灯发出明亮的光,但随着电动机转得越来越快,小电灯的亮度逐渐减弱;当转速正常时,小电灯的亮度稳定不变,此时用手指轻轻捏住电动机的转轴,使电动机的转速减慢,你猜想这时小电灯的亮度将 (选填“变亮”“变暗”或“不变”),理由是 .
(3)如果将小电灯换成灵敏电流表,电路连接如图乙,当用手快速转动电动机转轴时,发现灵敏电流表指针偏转,这是 现象,它在生活中的应用有 (举出一例即可).
(2014·黔东南州)为探究“影响电磁铁磁性强弱的因素”,小明用电池(电压一定)、滑动变阻器、数量较多的大头针、铁钉以及较长导线为主要器材,进行如图所示的简易实验.
(1)他将导线绕在铁钉上制成简易电磁铁,并巧妙地通过 来显示电磁铁磁性的强弱,下面的实验也用这种方法的是 .
A.认识电压时,我们可以用水压来类比 |
B.用光线来描述光通过的路径 |
C.把敲响的音叉接触水面,看有没有溅起水花,来判断音叉有没有振动 |
D.用斜面小车研究阻力对物体运动的影像 |
(2)连接好电路,使变阻器连入电路的阻值较大,闭合开关,观察到如图甲所示的情景:接着,移动变阻器滑片,使其连入电路的阻值变小,观察到图乙所示的情景,比较图甲和乙,可知 图中的电流较小,从而发现,通过电磁铁的电流越 (选填“大”或“小”)磁性越强.
(2014·青岛)归纳式探究-研究带电粒子在回旋加速器中的运动:
(1)磁体周围存在磁场,磁场的强弱用磁感应强度描述,用符号B表示,单位是特斯拉,符号是T.我们可以用磁感线的疏密程度形象地表示磁感应强度的大小.磁感应强度大的地方,磁感线密;磁感应强度小的地方,磁感线疏.
条形磁体外部的磁感线分布如图甲所示,则a、b两点磁感应强度较大的是 .
磁感应强度的大小和方向处处相同的磁场叫做匀强磁场.
(2)回旋加速器的原理如图乙所示,D1和D2是两个中空的半径为R的半圆金属盒,被置于与盒面垂直的磁感应强度为B的匀强磁场中,它们接在电压一定的交流电源上,从D1的圆心O处释放不同的带电粒子(加速度可以忽略,重力不计),粒子在两金属盒之间被不断加速,最终离开回旋加速器时,获得一定的最大动能.改变带电粒子质量为m,电荷量为q,磁感应强度B,金属盒半径R,带电粒子的最大动能Ek随之改变.得到数据如表:
次数 |
m/kg |
q/C |
B/T |
R/m |
Ek/J |
1 |
3.2×10-27 |
1.6×10-19 |
1×10-2 |
1 |
4×10-16 |
2 |
6.4×10-27 |
1.6×10-19 |
1×10-2 |
1 |
2×10-16 |
3 |
3.2×10-27 |
4.8×10-19 |
1×10-2 |
1 |
36×10-16 |
4 |
6.4×10-27 |
1.6×10-19 |
2×10-2 |
1 |
8×10-16 |
5 |
1.6×10-27 |
1.6×10-19 |
1×10-2 |
3 |
72×10-16 |
①Ek= k ,其中k= (填上数值和单位).
②对于同一带电粒子.在不同的同旋加速器中,要获得相同的最大动能,则金属盒半径R与磁感应强度B的关系可以用图象中的图线 表示.