如图,矩形 所在平面与半圆弧 所在平面垂直, 是 上异于 , 的点.
(1)证明:平面 平面 ;
(2)在线段 上是否存在点 ,使得 平面 ?说明理由.
在某社区举办的《有奖知识问答比赛》中,甲、乙、丙三人同时回答某一道题,已知甲回答对这道题的概率是,甲、丙二人都回答错的概率是
,乙、丙二人都回答对的概率是
.
(Ⅰ)求乙、丙二人各自回答对这道题的概率;
(Ⅱ)设乙、丙二人中回答对该题的人数为X,求X的分布列和数学期望.
[选修4 - 5:不等式选讲](本小题满分10分)
设,实数
满足
,求证:
.
[选修4 - 4:坐标系与参数方程](本小题满分10分)
在直角坐标系中,直线
的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
为极轴,且长度单位相同,建立极坐标系,得曲线
的极坐标方程为
.直线
与曲线
交于
两点,求
.
[选修4 - 2:矩阵与变换](本小题满分10分)
已知矩阵有特征值
及对应的一个特征向量
,求曲线
在
的作用下的新曲线方程.
[选修4 - 1:几何证明选讲](本小题满分10分)
如图,在梯形中,
∥BC,点
,
分别在边
,
上,设
与
相交于点
,若
,
,
,
四点共圆,求证:
.