某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数 ,并将完成生产任务所需时间超过 和不超过 的工人数填入下面的列联表:
超过 |
不超过 |
|
第一种生产方式 |
||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附: ,
(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
态度 调查人群 |
应该取消 |
应该保留 |
无所谓 |
在校学生 |
2100人 |
120人 |
![]() |
社会人士 |
600人 |
![]() |
![]() |
已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为
(1)现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)已知,
,若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”,求本次调查“失效”的概率.
(本小题满分12分)已知三棱锥中,侧棱垂直于底面,点
是
的中点.
(1)求证:平面
;
(2)若底面为边长为
的正三角形,
,求三棱锥
的体积.
(本小题满分12分)等差数列满足:
,
,其中
为数列
前
项和.
(1)求数列通项公式;
(2)若,且
,
,
成等比数列,求
值.
(本小题满分10分)选修4-5:不等式选讲
已知函数.
(1)求不等式的解集;
(2)若关于的不等式
的解集非空,求实数
的取值范围.
(本小题满分10分)选修4-4:极坐标于参数方程
已知曲线(
为参数),
(
为参数).
(1)化,
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若上的点
对应的参数为
,
为
上的动点,求
中点
到直线
(
为参数)距离的最小值.