游客
题文

某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过 m 的工人数填入下面的列联表:

超过 m

不超过 m

第一种生产方式

第二种生产方式

(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附: K 2 = n ad - bc 2 a + b c + d a + c b + d

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)
已知函数
(Ⅰ)写出函数的单调递减区间;
(Ⅱ)设的最小值是,最大值是,求实数的值.

(本小题满分14分)
某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;
(Ⅱ)设摸球次数为,求的分布列和数学期望.

(12分)已知函数
(1)写出函数的单调递减区间;
(2)设的最小值是,最大值是,求实数的值

(10分)如图,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点.
(1)求证:MN//平面PAD
(2)求证:MN⊥CD
(3)若∠PDA=45°,求证:MN⊥平面PCD.

(10分)(1)已知,求向量的夹角<,>;
(2)设向量,在向量上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号