某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数 ,并将完成生产任务所需时间超过 和不超过 的工人数填入下面的列联表:
超过 |
不超过 |
|
第一种生产方式 |
||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附: ,
已知椭圆的左右焦点为
,抛物线C:
以
为焦点且与椭圆相交于点
、
,点
在
轴上方,直线
与抛物线
相切.
(1)求抛物线的方程和点
、
的坐标;
(2)设A,B是抛物线C上两动点,如果直线,
与
轴分别交于点
.
是以
,
为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.
已知等差数列中,
,前
项和为
且满足条件:
(1)求数列的通项公式;
(2)若数列的前
项和为
有
,
,又
,求数列
的前
项和
.
如图,已知中,
,
,
,
,
交
于
,
为
上点,且
,将
沿
折起,使平面
平面
(1)求证:∥平面
;
(2)求三棱锥的体积
(本小题满分12分)某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:
视力数据 |
4.0 |
4.1 |
4.2 |
4.3 |
4.4 |
4.5 |
4.6 |
4.7 |
4.8 |
4.9 |
5.0 |
5.1 |
5.2 |
5.3 |
人数 |
2 |
2 |
2 |
1 |
1 |
(1)用上述样本数据估计高三(1)班学生视力的平均值;
(2)已知其余五个班学生视力的平均值分别为、
、
、
、
.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于
的概率.
的三个内角
对应的三条边长分别是
,且满足
(1)求的值;
(2)若,
,求
和
的值.