已知抛物线C: =2px经过点 (1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点, , ,求证: 为定值.
已知椭圆:
的一个顶点为
,离心率为
.直线
与椭圆
交于不同的两点M,N.
(Ⅰ)求椭圆的方程;
(Ⅱ)当△AMN得面积为时,求
的值.
等比数列的各项均为正数,且
(1)求数列的通项公式;
(2)设求数列
的前n项和.
如图,在直三棱柱中,
,
分别是棱
上的点(点
不同于点
),且
为
的中点.
求证:(1)平面平面
;
(2)直线平面
.
设函数.
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)在△ABC中,设角A,B的对边分别为a,b,若B=2A,且,求角C的大小.
已知p:方程2x2-2mx+1=0有两个不相等的负实根;q:存在x∈R,
x2+mx+1<0.若p或q为真,p且q为假,求实数m的取值范围.