数列 a n 满足 a 1 = 1 , a 2 = 2 , a n + 2 = 1 + cos 2 nπ 2 a n + sin 2 nπ 2 , n = 1 , 2 , 3 , … … .
(Ⅰ) 求 a 3 , a 4 , 并求数列 a n 的通项公式;
(II) 设 b n = a 2 n - 1 a 2 n , S n = b 1 + b 2 + … … + b n . 证明: 当 n ≥ 6 时 , S n - 2 < 1 n .
已知向量,. (1)求和; (2)当为何值时,.
已知, (1)讨论的单调区间; (2)若对任意的,且,有,求实数的取值范围.
在△ABC中,sinA+cosA=,AC=2,AB=3,求tgA的值和△ABC的面积.
已知函数(e为自然对数的底数). (Ⅰ)当时,求函数的单调区间; (Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.
已知函数 (Ⅰ)求的单调区间; (Ⅱ)求在区间上的最值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号