等比数列 的前n 项和为 ,已知 , , 成等差数列
(1)求 的公比 ;
(2)求
求
过点作直线
与抛物线
相交于两点
,圆
(1)若抛物线在点处的切线恰好与圆
相切,求直线
的方程;
(2)过点分别作圆
的切线
,
试求
的取值范围.
.(本题满分12分) 如图,PA垂直于矩形ABCD所在的平面, ,E、F分别是AB、PD的中点.
(1)求证:平面PCE 平面PCD;
(2)求三棱锥P-EFC的体积.
(本题满分12分)已知数列的通项公式为
,数列
的前n项和为
,且满足
(1)求的通项公式;
(2)在中是否存在使得
是
中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.
在极坐标中,已知圆经过点
,圆心为直线
与极轴的交点,求圆
的极坐标方程.
已知点P(4,4),圆C:与椭圆E:
有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.