(1)由波源S形成的简谐横波在均匀介质中向左、右传播。波源振动的频率为20 Hz,波速为16 m/s。已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位置之间的距离分别为15.8 m、14.6 m,P、Q开始震动后,下列判断正确的是_____。
A. |
P、Q两质点运动的方向始终相同 |
B. |
P、Q两质点运动的方向始终相反 |
C. |
当S恰好通过平衡位置时,P、Q两点也正好通过平衡位置 |
D. |
当S恰好通过平衡位置向上运动时,P在波峰 |
E. |
当S恰好通过平衡位置向下运动时,Q在波峰 |
(2)如图,玻璃球冠的折射率为 ,其底面镀银,底面的半径是球半径的 倍;在过球心O且垂直于底面的平面(纸面)内,有一与底面垂直的光线射到玻璃球冠上的M点,该光线的延长线恰好过底面边缘上的A点。求该光线从球面射出的方向相对于其初始入射方向的偏角。
光滑水平导轨宽L=1m,电阻不计,左端接有"6V 6W"的小灯。导轨上垂直放有一质量m=0.5kg、电阻r=2Ω的直导体棒,导体棒中间用细绳通过定滑轮吊一质量为M=1kg的钩码,钩码距地面高h=2m,如图所示。整个导轨处于竖直方向的匀强磁场中,磁感应强度为B=2T。释放钩码,在钩码落地前的瞬间,小灯刚好正常发光。(不计滑轮的摩擦,取g=10m/s2)求:⑴钩码落地前的瞬间,导体棒的加速度;⑵在钩码落地前的过程中小灯泡消耗的电能;⑶在钩码落地前的过程中通过电路的电量。
如图所示,光滑平行的金属导轨MN、PQ相距l,其框架平面与水平面成角,在M点和P点间接一个阻值为R的电阻,在两导轨间
矩形区域内有垂直导轨平面向下、宽为d的匀强磁场,磁感应强度为B.一质量为m、电阻为r的导体棒ab,垂直搁置于导轨上,与磁场上边界相距d0,现使它由静止开始运动,在棒ab离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:
(1)棒ab在离开磁场下边界时的速度,
(2)棒ab通过磁场区的过程中整个电路所消耗的电能.
如图所示为某一装置的俯视图,M、N为两个竖直放置的平行金属板,相距为0.4 m,L1和L2为与M、N平行的两根金属导轨(两导轨较细,与M、N上边棱处于同一水平面),L1与M以及L2与N的间距都是0. 1 m,两导轨的电阻不计,其右端接有R="0." 3Ω的电阻.现有一长为0. 4 m、电阻为0.2Ω的均匀金属导体棒ab,棒上的a、b、c、d四点分别与M、 N、L1、L2接触良好,且金属棒ab与金属板M、N正交,整个装置放在竖直向下的匀强磁场中.今有一带正电粒子(不计重力)以v0="7" m/s的初速度平行于极板水平入射.求当金属棒ab向何方向以多大速度运动时,可使带电粒子做匀速直线运动?
如图所示,两根水平平行固定的光滑金属导轨宽为L,足够长,在其上放里两根长也为L且与导轨垂直的金属棒ab和cd,它们的质量分别为2m、m,电阻阻值均为R(金属导轨及导线的电阻均可忽略不计),整个装置处在磁感应强度大小为B、方向竖直向下的匀强磁场中.
(1)现把金属棒ab锁定在导轨的左端,如图甲,对 cd施加与导轨平行的水平向右的恒力F,使金属棒cd向右沿导轨运动,当金属棒cd的运动状态稳定时,金属棒cd的运动速度是多大?
(2)若对金属棒ab解除锁定,如图乙,使金属棒cd获得瞬时水平向右的初速度v0,当它们的运动状态达到稳定的过程中,流过金属棒ab的电量是多少?整个过程中ab和cd相对运动的位移是多大?
有界匀强磁场区域如图甲所示,质量为m、电阻为R的长方形矩形线圈abcd边长分别为L和2L,线圈一半在磁场内,一半在磁场外,磁感强度为B0. t0 = 0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v-t图象如图乙所示,图中斜向虚线为O点速度图线的切线,数据由图中给出,不考虚重力影响,求:
(1)磁场磁感应强度的变化率;
(2) t2时刻回路电功率.