游客
题文

在平面直角坐标系xOy中,已知椭圆Γ: x 2 4 + y 2 = 1  ,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.

(1)若P在第一象限,且|OP|= 2 ,求P的坐标;

(2)设P 8 5 3 5 ,若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;

(3)若 M A = M P ,直线AQ与Γ交于另一点C,且   A Q = 2 A C P Q = 4 P M ,求直线AQ的方程.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组,……,第五组.右图是按上述分组方法得到的频率分布直方图.

(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设表示该班某两位同学的百米测试成绩,且已知,求事件“”的概率.

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1. (1)求证:BF∥平面ACGD; (2)求二面角DCGF的余弦值.

已知椭圆C:=1(a>b>0)的焦距为4,且与椭圆x2=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn.求满足不等式>2 010的n的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号