游客
题文

对于给定的正整数k,若数列 { a n } 满足: a n - k + a n - k + 1 + + a n - 1 + a n + 1 + a n + k - 1 + a n + k = 2 k a n 对任意正整数 n n k 总成立,则称数列{a n}是" P k 数列".

(Ⅰ)证明:等差数列 { a n } 是" P 3 数列";

(Ⅱ)若数列 { a n } 既是"P(2)数列",又是" P 3 数列",证明: { a n } 是等差数列.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,上是被切去的等腰直角三角形斜边的两个端点,设
(1)若广告商要求包装盒侧面积最大,试问应取何值?
(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.

已知为偶函数,曲线过点
(1)若曲线有斜率为0的切线,求实数的取值范围;
(2)若当时函数取得极值,确定的单调区间.

用反证法证明:已知,求证:

已知
(1)设,求
(2)如果,求实数的值.

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号