已知一个口袋有
个白球,
个黑球
,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,
的抽屉内,其中第k次取出的球放入编号为k的抽屉
.
(Ⅰ)试求编号为2的抽屉内放的是黑球的概率 ;
(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, 是 的数学期望,证明 .
已知圆:
内有一点
,过点
作直线
交圆
于
,
两点.
(1)当经过圆心
时,求直线
的方程;
(2)当弦被点
平分时,写出直线
的方程.
如图,已知二次函数y=(x+m)2+k-m2的图象与x轴相交于两个不同的点A(x1,0)、B(x2,0),与y轴的交点为C.设△ABC的外接圆的圆心为点P.
(1)求⊙P与y轴的另一个交点D的坐标;
(2)如果AB恰好为⊙P的直径,且△ABC的面积等于,求m和k的值.
已知动点到定点
的距离比到直线
的距离小1.
(1)求动点的轨迹
的方程;
(2)取上一点
,任作弦
,满足
,则弦
是否经过一个定点?若经过定点(设为点
),请写出
点的坐标,否则说明理由.
已知函数.
(1)求函数的极大值;
(2)若时,存在
的图象在
图象的上方,求实数
的取值范围.
已知三棱锥中,
,
,
,
,
分别是
,
中点.
(1)求证:;
(2)求直线与平面
所成角的正弦值.