游客
题文

[选修4―4:坐标系与参数方程]

在直角坐标系 xOy中,直线 l 1 的参数方程为 x = 2 + t , y = kt , t为参数),直线 l 2 的参数方程为 x = - 2 + m , y = m k , m 为参数) .设 l 1l 2的交点为 P,当 k变化时, P的轨迹为曲线 C

(1)写出 C的普通方程;

(2)以坐标原点为极点, x轴正半轴为极轴建立极坐标系,设 l 3 ρ ( cos θ + sinθ ) - 2 = 0 Ml 3C的交点,求 M的极径.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,命题q:指数函数f(x)=(3﹣2a)x是增函数,若p∨q为真,p∧q为假,求实数a的取值范围.

设函数f(x)=ax3+bx2+cx在x=1和x=﹣1处有极值,且f(1)=﹣1,求a,b,c的值,并求出相应的极值.

如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD="135°" 求BC的长.

已知等差数列{an}的前n项和为Sn,且满足a2=4,a3+a4=17.
(1)求{an}的通项公式;
(2)设bn=2an+2,证明数列{bn}是等比数列并求其前n项和Tn

已知函数 f ( x ) 满足下列关系式:(i)对于任意的 x , y R ,恒有 2 f ( x ) f ( y ) = f ( π 2 - x + y ) - f ( π 2 - x - y ;(ii) f ( π 2 ) = 1

求证:
(1) f ( 0 ) =0;
(2) f ( x ) 为奇函数;
(3) f ( x ) 是以 2 π 为周期的周期函数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号