游客
题文

已知:如图, A B C 为锐角三角形, A B = B C C D A B

求作:线段 BP ,使得点 P 在直线 CD 上,且  A B P = 1 2 BAC

作法:①以点 A 为圆心, AC 长为半径画圆,交直线 CD C P 两点;②连接 BP .线段 BP 就是所求作线段.

1 )使用直尺和圆规,依作法补全图形(保留作图痕迹)

2 )完成下面的证明.

证明: C D A B

A B P =        

A B = A C

∴点 B 在⊙ A 上.

又∵ B P C =   1 2 B A C        )(填推理依据)

A B P =   1 2 B A C

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图所示,在平面直角坐标系中, O 1 x 轴交于 A 2 , 0 , B t + 2 , 0 (且 t > 0 ) 两点,与 y 轴相切于点 C , AB = AC .

(1)求点 C , O 1 的坐标和 t 的值;

(2)求过点 A , B , C 的抛物线解析式;

(3)若抛物线顶点为 D ,判断点 D O 1 的位置关系,并求出 ABD 的外接圆半径.

如图①, P 为第一象限内一点,过 P , O 两点的 M x 轴正半轴于点 A ,交 y 轴正半轴于点 B , OPA = 45 .

(1)求证: PO 平分 APB ;

(2)作 OH P A 交弦 PA 于点 H .

①若 AH = 2 , OH + PB = 8 ,求 BP 的长;

②若 BP = m , OH = n ,把 POB 沿 y 轴翻折,得到 P ' OB (如图②),求 A P ' 的长.

如图, AB O 的直径,过点 B O 的切线 BM ,点 P 在右半圆上移动(点 P 与点 A , B 不重合),过点 P PC AB ,垂足为 C .点 Q 在射线 BM 上移动(点 M 在点 B 的右边),且在移动过程中保持 OQ / / AP .

(1)若 PC , QO 的延长线相交于点 E ,判断是否存在点 P ,使得点 E 恰好在 O 上?若存在,求出 APC 的大小;若不存在,请说明理由;

(2)连接 AQ PC 于点 F ,设 k = PF PC ,试问: k 的值是否随点 P 的移动而变化?证明你的结论.

如图, AB 是半圆的直径,弦 CD / / AB ,过点 B 的切线交 AD 的延长线于点 E , EF AC AC 的延长线于点 F .求证: AC = CF .

如图, AB O 的直径, C 是弧 AB 的中点,延长 AC D ,使 CD = AC ,连接 DB . E OB 的中点, CE 的延长线交 DB 的延长线于点 F , AF O 于点 H ,连接 BH .

(1)求证: BD O 的切线;

(2)若 BF = 1 ,求 BH 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号