已知:如图, 为锐角三角形, .
求作:线段 BP ,使得点 P 在直线 CD 上,且 .
作法:①以点 A 为圆心, AC 长为半径画圆,交直线 CD 于 C , P 两点;②连接 BP .线段 BP 就是所求作线段.
( 1 )使用直尺和圆规,依作法补全图形(保留作图痕迹)
( 2 )完成下面的证明.
证明: ,
.
,
∴点 B 在⊙ A 上.
又∵ ( )(填推理依据)
∴
如图所示,在平面直角坐标系中, 与 轴交于 (且 两点,与 轴相切于点 .
(1)求点 的坐标和 的值;
(2)求过点 的抛物线解析式;
(3)若抛物线顶点为 ,判断点 与 的位置关系,并求出 的外接圆半径.
如图①, 为第一象限内一点,过 两点的 交 轴正半轴于点 ,交 轴正半轴于点 .
(1)求证: 平分 ;
(2)作 交弦 于点 .
①若 ,求 的长;
②若 ,把 沿 轴翻折,得到 (如图②),求 的长.
如图, 是 的直径,过点 作 的切线 ,点 在右半圆上移动(点 与点 不重合),过点 作 ,垂足为 .点 在射线 上移动(点 在点 的右边),且在移动过程中保持 .
(1)若 的延长线相交于点 ,判断是否存在点 ,使得点 恰好在 上?若存在,求出 的大小;若不存在,请说明理由;
(2)连接 交 于点 ,设 ,试问: 的值是否随点 的移动而变化?证明你的结论.
如图, 是半圆的直径,弦 ,过点 的切线交 的延长线于点 交 的延长线于点 .求证: .
如图, 是 的直径, 是弧 的中点,延长 至 ,使 ,连接 是 的中点, 的延长线交 的延长线于点 交 于点 ,连接 .
(1)求证: 是 的切线;
(2)若 ,求 的长.