如图,平行四边形ABCD中, ,BC边上的高 ,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.
(1)求证: ;
(2)当点E为BC的中点时,求DE的长;
(3)设 ,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?
解分式方程: .
计算: .
如图,在平面直角坐标系中,抛物线 经过原点 ,顶点为 .
(1)求抛物线的函数解析式;
(2)设点 为抛物线 的对称轴上的一点,点 在该抛物线上,当四边
形 为菱形时,求出点 的坐标;
(3)在(2)的条件下,抛物线 在第一象限的图象上是否存在一点 ,使得点 到直线 的距离与其到 轴的距离相等?若存在,求出直线 的函数解析式;若不存在,请说明理由.
如图, 中, , 为 延长线上一点, ,过点 作 于点 ,交 于点 ,连接 , .
(1)求证: ;
(2)求 的度数;
(3)当 时,求 的值.
某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.
(1)当每件商品的售价为64元时,求该商品每天的销售数量;
(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.