为了有效落实“双减”政策,某校随机抽取部分学生,开展了“书面作业完成时间”问卷调查.根据调查结果,绘制了如下不完整的统计图表:
频数分布统计表
组别 |
时间 (分钟) |
频数 |
A |
|
|
B |
|
|
C |
|
|
D |
|
|
E |
|
|
根据统计图表提供的信息解答下列问题:
(1)频数分布统计表中的 ____, ____;
(2)补全频数分布直方图;
(3)已知该校有 名学生,估计书面作业完成时间在 分钟以上(含 分钟)的学生有多少人?
(4)若 组有两名男同学、两名女同学,从中随机抽取两名学生了解情况,请用列表或画树状图的方法,求出抽取的两名同学恰好是一男一女的概率.
已知一次函数与反比例函数
的图象交于P(2,a)和Q(﹣1,﹣4),求这两个函数的解析式.
某校图书馆的藏书在两年内从5万册增加到7.2万册,问平均每年藏书增长的百分率是多少?
已知关于x的一元二次方程有两个不相等的实数根,求m的取值范围.
将Rt△ABC和Rt△DEF按图1摆放(点F与点A重合),点A、E、F、B在同一直线上,∠ACB=∠DEF=90°,∠BAC=∠D=30°,BC=8cm,EF=6cm.
如图2,△DEF从图1位置出发,以1cm/s的速度沿射线AB下滑,DE与AC相交于点H,DF与AC相交于点G,设下滑时间为t(s)(0<t≤6).
(1)当t为何值时,点G在线段AE的垂直平分线上?
(2)是否存在某一时刻t,使B、C、D三点在同一条直线上,若存在,求出t的值;若不存在,请说明理由;
(3)设△DEF与△ABC的重合部分的面积为S,直接写出S与t之间的函数关系式以及S的最大值(不需要给出解答过程).
如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.
(1)求证:AC平分∠DAB;
(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;
(3)如图2,连接OD交AC于点G,若,求
的值.