游客
题文

综合与实践

【问题情境】

数学活动课上,老师出示了一个问题:如图1,在正方形 A B C D 中,E是BC的中点, A E E P E P 与正方形的外角 D C G 的平分线交于 P 点.试猜想 A E E P 的数量关系,并加以证明;

【思考尝试】

(1)同学们发现,取 A B 的中点 F ,连接 E F 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.

【实践探究】

(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形 A B C D 中, E B C 边上一动点(点 E B 不重合), A E P 是等腰直角三角形, A E P 90 ° ,连接 C P ,可以求出 D C P 的大小,请你思考并解答这个问题.

【拓展迁移】

(3)突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形 A B C D 中, E B C 边上一动点(点 E B 不重合), A E P 是等腰直角三角形, A E P 90 ° ,连接 D P .知道正方形的边长时,可以求出 A D P 周长的最小值.当 A B 4 时,请你求出 A D P 周长的最小值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

二次函数y=ax2+bx+c过点A、B两点(A左B右),且分布在y轴两侧,且OA、OB的长是方程x2﹣5x+4=0的两根,且OA>OB,与y轴交于点C(0,4).
(1)求4a﹣2b+c的值;
(2)连接AC、BC,P是线段AB上一动点,且AP=m,过点P作PM∥AC,交BC于M,当m为何值时,S△PCM的面积最大,并求出这个最大值;
(3)△ABC外接圆的面积是.(直接写出答案,结果保留π)

在如图所示的平面直角坐标系中,已知点A(2,4),B(4,2).
(1)在平面直角坐标系中,我们把横坐标、纵坐标都为整数的点称为整数点,请在第一象限内求作一个整数点C,使得AC=BC,且AC的长为小于4的无理数,则C点的坐标是,△ABC的面积是
(2)试求出△ABC外接圆的半径.

如图,圆O是Rt△ABC的外接圆,点D是劣弧AC上异于A,C点的一点,连接AD并延长交BC的延长线于点E.
(1)求证:△BDE∽△ACE;
(2)若AB=BE=10,CE=3,则AD的长是多少?
(3)若CD∥AB,过点A作AF∥BC交CD的延长线于点F,则=.(请直接写出答案)

已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.
(1)求证:AH=2OM;
(2)若∠BAC=60°,求证:AH=AO.(初二)

如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号