如图,抛物线 与 轴交于 两点,与 轴交于 点, .
(1)求拋物线的解析式;
(2)在第二象限内的拋物线上确定一点 ,使四边形 的面积最大,求出点 的坐标;
(3)在(2)的结论下,点 为 轴上一动点,抛物线上是否存在一点 ,使点 为顶点的四边形是平行四边形,若存在,请直接写出 点的坐标;若不存在,请说明理由.
已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1)说明:△BCE≌△DCF;
(2)OG与BF有什么数量关系?说明你的结论;
(3)若BC·BD=,求正方形ABCD的面积.
如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作等边三角形BPM,连结CM.
(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;
(2)若PA:PB:PC=1::
,试判断△PMC的形状,并说明理由.
如图所示,∠MBN=45°,若△ABC的顶点
A在射线BM上,且AB=,点C在射线BN运动(C
不与B重合).请你探究:
(1)当BC=时,△ABC是直角三角形,并标出所有符合要求的C点;
(2)当BC的值在范围时,△ABC是锐角三角形;
(3)当BC的值在范围时,△ABC是钝角三角形 .
已知矩形ABCD,现将矩形沿对角线BD折叠,得到如图所示的图形,
(1)求证:△ABE≌△C’ DE
(2)若AB=6,AD=10,求S△ABE
求下列各式中的实数x.
(1) ; (2)