游客
题文

如图,锐角 ABC 中, A , B , C 的对边分别是 a , b , c ,已知二次函数 y = x 2 cos A - x + 1 cos A 的图象顶点与点 - 2 cos A , 3 cos A 关于 y 轴对称.延长 AB P 点,使 AP = 2 AC ,且以 C 为圆心, AC 为半径的圆与以 B 为圆心 BP 为半径的圆相外切.

(1)求 A 的度数;

(2)设 BP = r ,求 a : b : c 的值;

(3)若关于 t 的方程 3 t 2 - 3 ct + a + b = 0 的两个根 α , β 满足 α α + 1 + β β + 1 = α + 1 β + 1 ,求 ABC 的面积.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.

(1)求证:AD⊥DC;
(2)若AD=2,AC=,求AB的长.

已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于O,连结AP、OP、OA.

(1)求证:△OCP∽△PDA;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长;

如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.

(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.

一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同。将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球。求第二次取出球的号码比第一次的大的概率。(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)

某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):


1号
2号
3号
4号
5号
总数
甲班
89
100
96
118
97
500
乙班
100
95
110
91
104
500


经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.
请你回答下列问题:
(1)计算两班的优秀率.
(2)求两班比赛成绩的中位数.
(3)比较两班比赛数据的方差哪一个小.
(4)根据以上三条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号