游客
题文

甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.

(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?

(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据≈1.4,≈1.7)

如图,一条输电线路从A地到B地需要经过C地,图中AC=20千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的输电线路.

(1)求新铺设的输电线路AB的长度;(结果保留根号)
(2)问整改后从A地到B地的输电线路比原来缩短了多少千米?(结果保留根号)

补充完整三角形中位线定理,并加以(1)三角形中位线定理:三角形的中位线
(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.

(为方便答题,可在答题卡上画出你认为必要的图形)
在Rt△ABC中,∠A=90°,AC =" AB" = 4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.

(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1 = CE1 ,且BD1⊥ CE1
(3)求点P到AB所在直线的距离的最大值.(直接写出结果)


如图,已知△ABC.按如下步骤作图:

①以A为圆心,AB长为半径画弧;
②以C为圆心,CB长为半径画弧,两弧相交于点D;
③连结BD,与AC交于点E,连结AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC =30°,∠BCA = 45°,AC = 4,求BE的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号