口袋中有 个相同的小球,它们分别写有数字 ,从口袋中随机取出两个球,用所得的两个数 和 构成函数 和 ,求使这两个函数的交点在直线 右侧的概率.
如图,在平面直角坐标系中,点A、B的坐标分别为(-5,0)和(5,0),以AB为直径在x轴的上方作半圆O,点C是该半圆上第一象限内的一个动点,连结AC、BC,并延长BC至点D,使BC=CD,过点D作x轴的垂线,分别交x轴、线段AC于点E、F,E为垂足,连结OF.
(1)当∠CAB=30°时,求弧BC的长;
(2)当AE=6时,求弦BC的长;
(3)在点C运动的过程中,是否存在以点O、E、F为顶点的三角形与△DEB相似?若存在,请求出此时E点的坐标;若不存在,请说明理由.
如图,在⊙O的内接△ABC中,AD⊥BC于D,
(1)①若作直径AP,求证:AB·AC=AD·AP;
②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式,及自变量x的取值范围;
(2)图2中,点E为⊙O上一点,且,求证:CE+CD=BD.
三个小球分别标有﹣2,0,1三个数,这三个球除了标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.
(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)
(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次.若记下的13个数之和等于﹣4,平方和等于14.求:这13次摸球中,摸到球上所标之数是0的次数.
已知:如图,矩形ABCD中,CD=2,AD=3,以C点为圆心,作一个动圆,与线段AD交于点P(P和A、D不重合),过P作⊙C的切线交线段AB于F点.
(1)求证:△CDP∽△PAF;
(2)设,
,求
关于
的函数关系式,及自变量
的取值范围;
(3)是否存在这样的点P,使△APF沿PF翻折后,点A落在BC上,请说明理由.
如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.
(1)若∠B=70°,求∠CAD的度数;
(2)若AB=4,AC=3,求DE的长.