游客
题文

如图,从如图①所示的等边三角形开始,把它各边分成相等的三段,在中间一段上向外画出一个小等边三角形,形成如图②所示的六角星图形;再在六角星各边上用同样的方法向外画出更小的等边三角形,形成如图③所示的有 18 个尖角的图形,然后,在其各边上再用同样的方法向外画出更小的等边三角形如图④,如此继续下去,图形的轮廓就能形成分支越来越多的曲线,这就是瑞典数学家科赫将雪花理想化得到的科赫雪花曲线.

如果设原等边三角形的边长为 a ,不妨把每一次图形的变化过程叫做“生长”,例如第一次生长后得到图②,每个小等边三角形的边长为 1 3 a ,所形成的图形的周长为 4 a ,请填写下表(用含 a 的代数式表示).


第一次生长后

第二次生长后

第三次生长后

n 次生长后

每个小等边三角形的边长

1 3 a




所形成图形的周长

4 a




科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

解方程:

计算:

如图①,若二次函数的图象与x轴交于点A(-2,0),B(3,0)两点,点A关于正比例函数的图象的对称点为C。
(1)求b、c的值;
(2)证明:点C 在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数的图象于点D,连结AC,交正比例函数的图象于点E,连结AD、CD。如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动,当其中一个到达终点时,另一个随之停止运动,连结PQ、QE、PE,设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC,若存在,求出t的值;若不存在,请说明理由。

阅读材料:如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=900,且点D 在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD。
解决问题:

(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为O,且顶角∠ACB=∠EDF=α,请直接写出的值(用含α的式子表示出来)。

如图是某地下商业街的入口,数学课外兴趣小组同学打算运用所学知识测量侧面支架最高点E到地面距离EF.经测量,支架立柱BC与地面垂直,即∠BCA=90°,且BC=1.5cm,点F、A、C在同一条水平线上,斜杆AB与水平线AC夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架边BE与AB夹角∠EBD=60°,又测得AD=1m。请你求出该支架边BE及顶端E到地面距离EF长度。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号