在平面直角坐标系中,抛物线 与 轴相交于点 (点 在点 的左侧),与 轴相交于点 ,连接 .
(1)求点 ,点 的坐标;
(2)如图1,点 在线段 上(点 不与点 重合),点 在 轴负半轴上, ,连接 ,设 的面积为 , 的面积为 , ,当 取最大值时,求 的值;
(3)如图2,抛物线的顶点为 ,连接 ,点 在第一象限的抛物线上, 与 相交于点 ,是否存在点 ,使 ,若存在,请求出点P的坐标;若不存在,请说明理由.
如图,一艘轮船位于灯塔 的北偏东 方向,与灯塔 的距离为80海里的 处,它沿正南方向航行一段时间后,到达位于灯塔 的南偏东 方向的 处,求此时轮船所在的 处与灯塔 的距离.(参考数据: ,结果保留整数)
如图,抛物线 与抛物线 开口大小相同、方向相反,它们相交于 , 两点,且分别与 轴的正半轴交于点 ,点 , .
(1)求抛物线 的解析式;
(2)在抛物线 的对称轴上是否存在点 ,使 的值最小?若存在,求出点 的坐标,若不存在,说明理由;
(3) 是直线 上方抛物线 上的一个动点,连接 , , 运动到什么位置时, 面积最大?并求出最大面积.
如图, 是 的直径,弦 与 交于点 ,且 ,连接 , .
(1)求证: ;
(2)若 , ,求弦 的长;
(3)在(2)的条件下,延长 至点 ,使 ,连接 .求证: 是 的切线.
将在同一平面内如图放置的两块三角板绕公共顶点 旋转,连接 , .探究 与 的比是否为定值.
(1)两块三角板是完全相同的等腰直角三角板时, 是否为定值?如果是,求出此定值,如果不是,说明理由.(图①
(2)一块是等腰直角三角板,另一块是含有 角的直角三角板时, 是否为定值?如果是,求出此定值,如果不是,说明理由.(图②
(3)两块三角板中, , , , , , , , 为常数), 是否为定值?如果是,用含 , , , 的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③
某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有 , 两种客车可供租用, 型客车每辆载客量45人, 型客车每辆载客量30人.若租用4辆 型客车和3辆 型客车共需费用10700元;若租用3辆 型客车和4辆 型客车共需费用10300元.
(1)求租用 , 两型客车,每辆费用分别是多少元;
(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?