如图,已知等边△ABC,AB=16,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求tan∠FGD的值.
设p:函数的定义域为R; q:不等式
,对
∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数
的取值范围.
已知在区间
上是增函数.
(1)求实数的值组成的集合
;
(2)设关于的方程
的两个非零实根为
、
.试问:是否存在实数
,使得不等式
对任意
及
恒成立?若存在,求
的取值范围;若不存在,请说明理由.
已知椭圆,
、
是其左右焦点,离心率为
,且经过点
.
(1)求椭圆的标准方程;
(2)若、
分别是椭圆长轴的左右端点,
为椭圆上动点,设直线
斜率为
,且
,求直线
斜率的取值范围;
(3)若为椭圆上动点,求
的最小值.
数列的前
项和记为
,
,
.
(1)求数列的通项公式;
(2)等差数列的前
项和
有最大值,且
,又
、
、
成等比数列,求
.
如图,四棱锥的底面是正方形,
底面
,
,
,点
、
分别为棱
、
的中点.
(1)求证:平面
;
(2)求证:平面平面
;
(3)求三棱锥的体积.