在平面直角坐标系 x O y 中,已知圆 C 1 : x + 3 2 + y - 1 2 = 4 和圆 C 2 : x - 4 2 + y - 5 2 = 4 . (1)若直线 l 过点 A 4 , 0 ,且被圆 C 1 截得的弦长为 2 3 ,求直线 l 的方程;
(2)设 P 为平面上的点,满足:存在过点 P 的无穷多对互相垂直的直线 l 1 和 l 2 ,它们分别与圆 C 1 和圆 C 2 相交,且直线 l 1 被圆 C 1 截得的弦长与直线 l 2 被圆 C 2 截得的弦长相等,试求所有满足条件的点P的坐标.
已知函数的图像在点处的切线方程为. (Ⅰ)求实数的值; (Ⅱ)设是[)上的增函数, 求实数的最大值.
设函数. (1)对于任意实数,恒成立,求的最大值; (2)若方程有且仅有一个实根,求的取值范围.
已知函数是定义在上的奇函数,当时,,且。 (1)求的值,(2)求的值.
已知命题p:“x∈[1,2],2x2-a≥0”,命题q:“x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围。
已知全集R,,. (1); (2)若不等式的解集为,求、的值
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号