(本小题满分12分)甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:
若将频率视为概率,回答下列问题.(Ⅰ)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率; (Ⅱ)若甲、乙两运动员各自射击1次,ξ表示这2次射击中击中9环以上(含9环)的次数,求ξ的分布列及Eξ.
(本小题满分14分)
已知函数
.
(Ⅰ)若曲线
在
和
处的切线互相平行,求
的值;
(Ⅱ)求
的单调区间;
(Ⅲ)设
,若对任意
,均存在
,使得
,求
的取值范围.
(本小题满分13分)
已知椭圆
(
)的右焦点为
,离心率为
.
(Ⅰ)若
,求椭圆的方程;
(Ⅱ)设直线
与椭圆相交于
,
两点,
分别为线段
的中点. 若坐标原点
在以
为直径的圆上,且
,求
的取值范围.
(本小题满分13分)
一个袋中装有
个形状大小完全相同的小球,球的编号分别为
.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
(Ⅱ)若从袋中每次随机抽取
个球,有放回的抽取3次,求恰有
次抽到
号球的概率;
(Ⅲ)若一次从袋中随机抽取
个球,记球的最大编号为
,求随机变量
的分布列.
(本小题满分13分)
如图,在三棱柱
中,侧面
,
均为正方形,∠
,点
是棱
的中点.
(Ⅰ)求证:
⊥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的余弦值.
(本小题满分13分)
已知函数
.
(Ⅰ)若点
在角
的终边上,求
的值;
(Ⅱ)若
,求
的值域.