(本小题满分12分)
经统计,某大医院一个结算窗口每天排队结算的人数及相应的概率如下:
排队人数 |
0—5 |
6—10 |
11—15 |
16—20 |
21—25 |
25人以上 |
概 率 |
0.1 |
0.15 |
0.25 |
0.25 |
0.2 |
0.05 |
(1)每天不超过20人排队结算的概率是多少?
(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,医院就需要增加结算窗口,请问该医院是否需要增加结算窗口?
已知函数,其中
.
(Ⅰ)若是函数
的极值点,求实数
的值;
(Ⅱ)若对任意的(
为自然对数的底数)都有
成立,求实数
的取值范围.
设是各项都为正数的等比数列,
是等差数列,且
,
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设数列的前
项和为
,求数列
的前
项和
.
四名教师被分到甲、乙、丙三所学校参加工作,每所学校至少一名教师.
(Ⅰ)求、
两名教师被同时分配到甲学校的概率;
(Ⅱ)求、
两名教师不在同一学校的概率;
(Ⅲ)设随机变量为这四名教师中分配到甲学校的人数,求
的分布列和数学期望.
已知函数(其中
>0),且函数
的最小正周期为
.
(Ⅰ)求的值;
(Ⅱ)求函数在区间
上的最大值和最小值.
在数列中,对于任意
,等式:
恒成立,其中常数
.
(1)求的值;
(2)求证:数列为等比数列;
(3)如果关于的不等式
的解集为
,试求实数
的取值范围.