(本小题满分12分)已知函数 (
) , (Ⅰ)试确定
的单调区间 , 并证明你的结论 ;(Ⅱ)若
时 , 不等式
恒成立 , 求实数
的取值范围 .
(本小题满分12分)
已知斜三棱柱ABC—A1B1C1,侧面与底面
垂直,∠
,
,且
⊥
,AA1=A1C.
(1)试判断A1A与平面A1BC是否垂直,并说明理由;
(2)求侧面BB1C1C与底面ABC所成锐二面角的余弦值.
(本小题满分12分)是首项
的等比数列,其前
项和为Sn,且
成等比数列.
(1)求数列的通项公式;
(2)若,设
为数列
的前
项和,
求证:
(本小题满分12分)
甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、
“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为
(1)求掷骰子的次数为7的概率;
(2)求的分布列及数学期望E
.
(1)已知关于的不等式
在
上恒成立,求实数
的最小值;
(2)已知,求证:
.
(本小题满分10分)
已知曲线的参数方程为
(
为参数),曲线
的极坐标方程为
.
(1)将曲线的参数方程化为普通方程,将曲线
的极坐标方程化为直角坐标方程;
(2)曲线,
是否相交,若相交请求出公共弦的长,若不相交,请说明理由.