(文)某企业原有产品每年投入x万元,所获年利润为(万元),对开发的新产品,每年投入x万元,所获年利润为
(万元),新产品开发用两年时间完成,这两年,每年从100万元生产准备资金中拿出80万元投入新产品开发,从第三年开始这100万元可随意分配且全部用于新旧产品的生产投入.为解决资金缺口,第一年初向银行贷款1000万元,年利率5.5%(不计复利,即先一年利息不计入下一年本金).(1)第五年底一次性向银行还本息多少万元?(2)从新产品开发的第三年起,新旧产品各投入多少万元年利润最大,最大利润是多少?(3)从新旧产品生产五年的最高利润总和中拿出70%来能否还清贷款?
甲、乙两人解关于的方程:
甲写错了常数b,得到根为
,乙写错了常数c,得到根为
.求方程的真正根。
已知
(本小题满分14分)为了解初三学生女生身高情况,某中学对初三女生身高进行了一次抽样调查,根据所得数据整理后列出了频率分布表如下:
组 别频数频率
145.5~149.5 1 0.02
149.5~153.5 4 0.08
153.5~157.5 22 0.44
157.5~161.5 13 0.26
161.5~165.5 8 0.16
165.5~169.5m n
合 计 M N
(1)求出表中所表示的数m,n,M,N分别是多少?
(2)画出频率分布直方图和频率分布折线图.
(3)若要从中再用分层抽样方法抽出10人作进一步调查,则身高在[153.5,161.5)范围内的应抽出多少人?
(4)根据频率分布直方图,分别求出被测女生身高的众数,中位数和平均数?(结果保留一位小数)
(本题满分13分)已知关于x的二次函数
(1)设集合和
,从集合
中随机取一个数作为
,从
中随机取一个数作为
,求函数
在区间
上是增函数的概率;
(2)设点是区域
内的随机点,求函数
在区间
上是增函数的概率.
(本小题满分14分)
某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:
(I)请画出适当的统计图(茎叶图或频率分布直方图);如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).
(Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个不高于 12.8秒的概率.
(III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,
现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.