甲、乙两人解关于的方程:
甲写错了常数b,得到根为
,乙写错了常数c,得到根为
.求方程的真正根。
(本小题满分13分)在四棱锥中,
平面
,
是正三角形,
与
的交点
恰好是
中点,又
,
,点
在线段
上,且
.
(1)求证:;
(2)求证:平面
;
(3)求二面角的余弦值.
(本小题满分13分)已知点,
,点
为坐标原点,点
在第二象限,且
,记
.
(1)求的值;
(2)若,求
的面积.
(本小题满分13分)某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2),如下表所示:
A |
B |
C |
D |
E |
|
身高 |
1.69 |
1.73 |
1.75 |
1.79 |
1.82 |
体重指标 |
19.2 |
25.1 |
18.5 |
23.3 |
20.9 |
(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率
(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
已知椭圆的中心在坐标原点,焦点在
轴上,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若,
是椭圆
上关
轴对称的任意两点,设点
,连接
交椭圆
于另一点
,求证:直线
与
轴相交于定点
;
(Ⅲ)设为坐标原点,在(Ⅱ)的条件下,过点
的直线交椭圆
于
,
两点,求
的取值范围.
已知数列的前n项和
(
),数列
.
(Ⅰ)求证:数列是等差数列,并求数列
的通项公式;
(Ⅱ)设数列的前n项和为
,证明:
且
时,
;
(Ⅲ)设数列满足
,(
为非零常数,
),问是否存在整数
,使得对任意
,都有
?