设定义在上的函数
,满足当
时,
,且对任意
,有
,
(1)解不等式
(2)解方程
已知函数,
,
(1)若为奇函数,求
的值;
(2)若=1,试证
在区间
上是减函数;
(3)若=1,试求
在区间
上的最小值.
随着机构改革工作的深入进行,各单位要减员增效。有一家公司现有职员人,(
,且
为偶数),每人每年可创利
万元。据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年可多创利
万元,但公司需支付下岗职员每人每年
万元的生活费,并且该公司正常运转所需人数不得小于现有员工的
,为获得最大的经济效益,该公司应裁员多少人?
以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学植树棵数的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(注:方差s2=[(x1-
)2+(x2-
)2+…+(xn-
)2]),其中
为x1,x2,…,xn的平均数)
以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
房屋面积(m2) |
115 |
110 |
80 |
135 |
105 |
销售价格(万元) |
24.8 |
21.6 |
18.4 |
29.2 |
22 |
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)根据(2)的结果估计当房屋面积为150 m2时的销售价格.