(本题满分12分) 已知函数=
,在x=1处取得极值为2.(1)求函数
的解析式;(2)若函数
在区间(m,2m+1)上为增函数,求实数m的取值范围;(3)若P(x0,y0)为
=
图象上的任意一点,直线l与
=
的图象相切于点P,求直线l的斜率的取值范围.
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.
判断下列函数的奇偶性.
(1)f(x)=;
(2)f(x)=log2(x+) (x∈R);
(3)f(x)=lg|x-2|.
已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)="-" .
(1)判断并证明f(x)在R上的单调性;
(2)求f(x)在[-3,3]上的最值.
已知f(x)=(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0.
(1)求证:f(x)在(-∞,+∞)上为增函数;
(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.