(本小题满分13分) 近段时间我国北方严重缺水, 某城市曾一度取消洗车行业. 时间久了,车容影响了市容市貌. 今年该市决定引进一
种高科技产品污水净化器,允许洗车行开始营业,规定洗车行必须购买这种污水净化器,使用净化后的污水(达到生活用水标准)洗车. 污水净化器的价格是每台90万元,全市统一洗车价格为每辆每次8元. 该市今年的汽车总量是80000辆,预计今后每年汽车数量将增加2000辆.洗车行A经过测算,如果全市的汽车总量是x,那么一年内在该洗车行洗车的平均辆次是
,该洗车行每年的其他费用是20000元. 问:洗车行A从今年开始至少经
过多少年才能收回购买净化器的成本?(注:洗车行A买一台污水净化器就能满
足洗车净水需求)
(本小题满分12分)如图,轴,点
在
的延长线上,且
,当点
在圆
上运动时.
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)过点作圆
的切线
交曲线
于
,
两点,求
面积
的最大值和相应的点
的坐标.
(本小题满分12分)正方形与梯形
所在平面互相垂直,
,点
在线段
上且不与
重合.
(Ⅰ)当点是
中点时,求证:
;
(Ⅱ)当平面与平面
所成锐二面角的余弦值为
时,求三棱锥
的体积.
(本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调 查结果如下表所示:
(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:.
(本小题满分12分)设数列的各项均为正数,它的前
项和为
,点
在函数
的图像上;数列
满足
,其中
.
(Ⅰ)求数列和
的通项公式;
(Ⅱ)设,求证:数列
的前
项和
.
选修4-5:不等式证明选讲
已知.
(1)解不等式;
(2)若关于的不等式
对任意的
恒成立,求
的取值范围.