((12分)大学毕业生小明到甲、乙、丙三个单位应聘,其被录用的概率分别为(各单位是否录用他相互独立,允许小明被多个单位同时录用) (1)求小明没有被录用的概率;(2)设录用小明的单位个数为,求的分布列和它的数学期望。
等差数列中,前三项分别为,前项和为, (1)、求和;(2)、设T=,证明T<1
在中,,. (Ⅰ)求的值;(Ⅱ)设,求的面积.
已知,命题函数在上单调递减,命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。
(本小题满分12分) 设函数 (1)试用含a的代数式表示b, (2)求f(x)的单调区间; (3)令a=-1,设函数f(x)在处取得极值,记点,证明:线段MN与曲线f(x)存在异于M,N的公共点。
(本小题满分12分) 已知椭圆的离心率为,焦点到相应准线的距离为 (1)求椭圆C的方程 (2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号