某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试. 假设某学生每次通过测试的概率都是
,每次测试通过与否互相独立. 规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该学生恰好经过4次测试考上大学的概率;
(2)求该学生考上大学的概率.
已知A、B、C是三角形ABC的三内角,且,并且
(1)求角A的大小。
(2)的递增区间。
某工厂2010年第一季度生产的A、B、C、D四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取50件样品参加四月份的一个展销会:
(1)问A、B、C、D型号的产品各抽取多少件?
(2)从50件样品随机的抽取2件,求这2件产品恰好是不同型号产品的概率;(3)从A、C型号的产品中随机的抽取3件,用
表示抽取A种型号的产品件数,求
的分布列和数学期望。
(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)
(本小题满分10分)选修4—5:不等式选讲
设函数
(1)求不等式的解集;
(2)若不等式(
,
,
)恒成立,求实数
的范围.
(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)
(本小题满分10分)选修4—4:坐标系与参数方程已知直线的参数方程为
(
为参数),曲线C的极坐标方程是
,以极点为原点,极轴为
轴正方向建立直角坐标系,点
,直线
与曲线C交于A、B两点.
(1)写出直线的极坐标方程与曲线C的普通方程;
(2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.
(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)(本小题满分10分)选修4—1:几何证明选讲
如图,是⊙
的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.
求证:(1);
(2).