一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长与身高
进行测量,得到数据(单位均为
)作为一个样本如上表示.
脚掌长(x) |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
身高(y) |
141 |
146 |
154 |
160 |
169 |
176 |
181 |
188 |
197 |
203 |
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,做出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程;
(2)若某人的脚掌长为,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率. (参考数据:,
)
已知数列{an}中,a1=,an+1=
(n∈N*).
(1)求证:数列{}是等差数列,并求{an}的通项公式;
(2)设bn+an=l(n∈N*),S=b1b2+b2b3+…+bnbn+1,试比较an与8Sn的大小.
已知向量,
,
。
(1)求的值;
(2)若且
,求
的值。
在△ABC中,内角A,B,C的对边分别为a,b,c,若b=1,c=.
(Ⅰ)求角C的取值范围;
(Ⅱ)求4sinCcos(C)的最小值.
已知函数,
.
(Ⅰ)若有且仅有两个不同的解,求
的值;
(Ⅱ)若当时,不等式
恒成立,求实数
的取值范围;
(Ⅲ)若时,求
在
上的最大值.
已知抛物线:
的准线与
轴交于
点,
为抛物线
的焦点,过
点斜率为
的直线
与抛物线
交于
、
两点.
(Ⅰ)若,求
的值;
(Ⅱ)是否存在这样的,使得抛物线
上总存在点
满足
,若存在,求
的取值范围;若不存在,说明理由.