在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅲ)求证CE∥平面PAB.
如图,
是圆
的直径,
、
在圆
上,
、
的延长线交直线
于点
、
,
求证:
(Ⅰ)直线
是圆
的切线;
(Ⅱ)

设函数
(
为常数)
(Ⅰ)
=2时,求
的单调区间;
(Ⅱ)当
时,
,求
的取值范围
已知椭圆
的右焦点为
,上顶点为B,离心率为
,圆
与
轴交于
两点
(Ⅰ)求
的值;
(Ⅱ)若
,过点
与圆
相切的直线
与
的另一交点为
,求
的面积
如图,四边形
是正方形,
,
,
, 
(Ⅰ)求证:平面
平面
;
(Ⅱ)求三棱锥
的高 
下表是某单位在2013年1—5月份用水量(单位:百吨)的一组数据:
月份![]() |
1 |
2 |
3 |
4 |
5 |
用水量![]() |
4 5 |
4 |
3 |
2 5 |
1 8 |
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0 05,视为“预测可靠”,通过公式得
,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率
参考公式:回归直线方程是:
,