(本小题满分12分)
已知均在椭圆
上,直线
、
分别过椭圆的左右焦点
、
,当
时,有
.
(I)求椭圆的方程;
(II)设P是椭圆上的任一点,
为圆
的任一条直径,求
的最大值.
如图,正方形
和
的边长均为1,且它们所在平面互相垂直,
为线段
的中点,
为线段
的中点。
(1)求证:∥面
;
(2)求证:平面⊥平面
;
(3)求直线与平面
所成角的正切值.
在中,
是角
所对的边,已知
.
(Ⅰ)求角的大小;
(Ⅱ)若的面积为
,求
的值.
O为坐标原点, 和
两点分别在射线
上移动,且
,动点P满足
,
记点P的轨迹为C.
(I)求的值;
(II)求P点的轨迹C的方程,并说明它表示怎样的曲线?
(III)设点G(-1,0),若直线与曲线C交于M、N两点,且M、N两点都在以G为圆心的圆上,求
的取值范围.
如图, 两点分别在射线OS,OT上移动,
且,O为坐标原点,动点P满足
.
(1)求的值
(2)求点P的轨迹C的方程,并说明它表示怎样的曲线.
数列{an}满足a1=1,a2=2,an+2=(1+cos2)an+sin
,n=1、2、3…
(1)求a3、a4并求数列{an}的通项公式
(2)设bn=,令 Sn=
求 Sn