已知抛物线与坐标轴有三个交点,经过这三点的圆记为
.
(1) 求实数的取值范围;
(2) 设抛物线与x轴的交点从左到右分别为A、B,与y轴的交点为C,求A、B、C三点的坐标;
(3) 设直线是抛物线在点A处的切线,试判断直线
是否也是圆
的切线?并说明理由.
设数列前n项和为Sn,且
(Ⅰ)求
的通项公式;
(Ⅱ)若数列{bn}满足b1=1且bn+1=bn+an(n≥1),求数列{bn}的通项公式
在中,角
所对的边分别为
,且满足
,
.(I)求
的面积;(II)若
,求
的值.
一批救灾物资随26辆汽车从某市以x km/h的速度匀速开往400km处的灾区,为安全起见,每两辆汽车的前后间距不得小于km,问这批物资全部到达灾区,最少要多少小时?
设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,求
的最小值。
等差数列{an}不是常数列,a5=10,且a5,a7,a10是某一等比数列{bn}的第1,3,5项.(1)求数列{an}的第20项。(2)求数列{bn}的通项公式.