已知椭圆:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
(本小题满分15分)如图所示,正方形与直角梯形
所在平面互相垂直,
,
,
.
(1)求证:平面
;
(2)求证:平面
;
(3)求四面体的体积.
在中,角
的对边分别为
,已知
.
(Ⅰ)求角的大小;
(Ⅱ)若,求△
的面积.
已知函数,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若、
R且
,证明:函数
必有局部对称点;
(2)若函数在区间
内有局部对称点,求实数
的取值范围;
(3)若函数在R上有局部对称点,求实数
的取值范围.
已知抛物线(
)的准线与
轴交于点
.
(1)求抛物线的方程,并写出焦点坐标;
(2)是否存在过焦点的直线(直线与抛物线交于点
,
),使得三角形
的面积
?若存在,请求出直线
的方程;若不存在,请说明理由.