甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球,现在从甲、乙两袋中各取出2个球。(I)求取得的4个球均是白球的概率;(II)求取得白球个数的数学期望
(本小题满分12分)
已知函数(
,实数
,
为常数).
(Ⅰ)若,求
在
处的切线方程;
(Ⅱ)若,讨论函数
的单调性.
(本小题满分12分)
为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
队别 |
北京 |
上海 |
天津 |
八一 |
人数 |
4 |
6 |
3 |
5 |
(Ⅰ)从这18名队员中随机选出两名,求两人来自同一支队的概率;
(Ⅱ)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队的人数为,求随机变量
的分布列,及数学期望
.
(本小题满分12分)
如图,四棱锥的底面为正方形,侧棱
底面
,且
,
分别是线段
的中点.
(Ⅰ)求证://平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的大小.
(本小题满分10分)
在中,
分别为角
所对的三边,已知
.
(Ⅰ)求角的值;
(Ⅱ)若,
,求
的长.
(本小题满分14分)
已知函数.
(Ⅰ)若函数在定义域内为增函数,求实数
的取值范围;
(Ⅱ)当时,试判断
与
的大小关系,并证明你的结论;
(Ⅲ) 当且
时,证明:
.