游客
题文

已知函数上一点P(1,-2),过点P作直线l,(Ⅰ)求使直线ly=fx)相切且以P为切点的直线方程;(Ⅱ)求使直线ly=fx)相切且切点异于P的直线方程y=gx);(Ⅲ)在(Ⅱ)的条件下,求上单调时,t的取值范围.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

在圆上任取一点,过点轴的垂线段为垂足,当点在圆上运动时,线段的中点的轨迹为曲线
(Ⅰ)求曲线的方程;
(Ⅱ)过点的直线与曲线相交于不同的两点, 点在线段的垂直平分线上,且,求的值

设数列的前项n和为,若对于任意的正整数n都有.
(1)设,求证:数列是等比数列,并求出的通项公式。
(2)求数列的前n项和.

如图所示,直三棱柱ABCA1B1C1中,CA=CB=1,
BCA=90°,棱AA1=2,MN分别是A1B1A1A的中点.
(1)求的长;
(2)求cos<>的值;
(3)求证:A1BC1M.

命题p:关于的不等式对于一切恒成立,命题q:函数是增函数,若为真,为假,求实数的取值范围;

某商场预计全年分批购入每台价值为2 000元的电视机共
3 600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号