证明关于的不等式
与
,当
为任意实数时,至少有一个桓成立。
(本小题满分12分)
为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
天数t(天) |
3 |
4 |
5 |
6 |
7 |
繁殖个数y(千个) |
2.5 |
3 |
4 |
4.5 |
6 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,
.
(本小题满分12分)设数列的前n项和为
,满足
,且
.
(Ⅰ)求的通项公式;
(Ⅱ)若成等差数列,求证:
成等差数列.
(本小题满分10分)选修4-5:不等式选讲
已知函数.
(Ⅰ)当时,解不等式
;
(Ⅱ)若的最小值为1,求a的值.
(本小题满分10分)选修4-4:坐标系与参数方程
已知椭圆C:,直线
(t为参数).
(Ⅰ)写出椭圆C的参数方程及直线的普通方程;
(Ⅱ)设,若椭圆C上的点P满足到点A的距离与其到直线
的距离相等,求点P的坐标.
(本小题满分10分)如图,圆周角的平分线与圆交于点D,过点D的切线与弦AC的延长线交于点E,AD交BC于点F.
(Ⅰ)求证:;
(Ⅱ)若D,E,C,F四点共圆,且弧长AC等于弧长BC,求.