若f(x)=2sin
cos
-2sin2
. (1)若x∈[0,π],求f(x)的值域; (2)在△ABC中,A、B、C所对边分别为a、b、c,若f(C)=1,且b2=ac,求sinA的值.
某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.
如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?
如图,在直角梯形中,
,
,
.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1)求证:平面
;
(2)求几何体的体积.
如图,已知点和单位圆上半部分上的动点
.
(1)若,求向量
;
(2)求的最小值.
已知数列满足
。
(1)求数列的通项公式;
(2)求数列的前n项和Sn。
已知函数(
为常数,
)
(1)若是函数
的一个极值点,求
的值;
(2)求证:当时,
在
上是增函数;
(3)若对任意的,总存在
,使不等式
成立,求正实数
的取值范围.