如图所示,已知三棱柱ABC-的底面边长均为2,侧棱
的长为2且与底面ABC所成角为
,且侧面
垂直于底面ABC.
(1)求二面角的正切值的大小;
(2)若其余条件不变,只改变侧棱的长度,当侧棱
的长度为多长时,可使面
和底面垂直.
甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3元和5
元,问供水站C建在岸边何处才能使水管费用最省?
一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格
(元/吨)之间的关系式为:
,且生产x吨的成本为
(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
.当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2.
(1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么?
已知函数在R上有定义,对任何实数
和任何实数
,都有
(Ⅰ)证明;
(Ⅱ)证明其中
和
均为常数;
(Ⅲ)当(Ⅱ)中的时,设
,讨论
在
内的单调性并求极值.