.当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2.
(1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么?
(本小题12分)已知p:,q:x2-2x+1-m2≤0(m>0),且┐p是┐q的必要而不充分条件,求实数m的取值范围.
(本小题12分)已知直线l与两坐标轴围成的三角形的面积为3, 且过定点A(-3,4). 求直线l的方程.
本小题12分)命题p: 函数y=在(-1, +
)上单调递增, 命题
函数y=lg[
]的定义域为R
(1) 若“或
”为真命题,求
的取值范围;
(2) 若“或
”为真命题,“
且
”为假命题,求
的取值范围
(本小题14分) 如图,在平面直角坐标系xoy中,设点F(0, p)(p>0), 直线l : y= -p, 点P在直线l上移动,R是线段PF与x轴的交点, 过R、P分别作直线、
,使
,
.
(1)求动点Q的轨迹C的方程;
(2)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(3)对(2)求证:当直线MA, MF, MB的斜率存在时,直线MA, MF, MB的斜率的倒数成等差数列.
(本小题13分) 已知数列{a}满足0<a
, 且
(n
N*).
(1) 求证:an+1≠an;
(2) 令a1=,求出a2、a3、a4、a5的值,归纳出an , 并用数学归纳法证明.