(本小题满分10分)
已知=(1,2),
=(x,1),分别求x的值使:
①(2+
)⊥(
-2
) ; ②(2
+
)∥(
-2
) ; ③
与
的夹角是600.
(本小题满分12分)
已知函数
(1)求f(x)在[0,1]上的极值;
(2)若对任意成立,求实数a的取值范围;
(3)若关于x的方程在[0,2]上恰有两个不同的实根,求实数b的取值范围.
(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q
,该同学选择先在A处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
![]() |
0 |
2 |
3 |
4 |
5 |
p |
0.03 |
P1 |
P2 |
P3 |
P4 |
(1)求q的值;
(2)求随机变量的数学期望E
;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
(本小题共12
已知是函数
的一个极值点
(1)求
(2)求函数的单调区间
(3)若直线与函数
的图像有3个交点,求
的取值范围
(本小题共12分)
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望