(本小题满分13分)
设a、b、c分别是先后掷一枚质地均匀的正方体骰子三次得到的点数.
(1)求使函数在R上不存在极值点的概率;
(2)设随机变量,求
的分布列和数学期望.
(本小题满分14分)
已知定义在R上的单调函数,存在实数
,使得对于任意实数
总有
恒成立.(Ⅰ)求
的值;(Ⅱ)若
,且对任意正整数
,有
,记
,
,比较
与
的大小关系;
(Ⅲ)若不等式对任意不小于2的正整数
都成立,求
的取值范围.
(本小题满分13分)
已知函数R),设关于
的方程
的两实根为
,方程
的两实根为
.(Ⅰ)若
,求
的关系式;(Ⅱ)若
均为负整数,且
,求
的解析式;(Ⅲ)若
.
(本小题满分12分)如图,
是单位圆与
轴正半轴的交点,点
在单位圆上,
,
,四边形
的面积为
.
(Ⅰ)试判断四边形的形状并求其面积
;
(Ⅱ)设函数,求
的最大值及对应的的值
;
(Ⅲ)设点的坐标为
,
,在(Ⅱ)的条件下,求
.
(本小题满分12分)某建筑的金属支架如图所示,根据要求
至少长
,
为
的中点,
到
的距离比
的长小
,
,已知建筑支架的材料每米的价格一定,问怎样设计
的长,可使建造这个支架的成本最低?
(本小题满分12分)
已知的面积为
.(1)求
的值;
(2)求的值