(本小题满分14分)
已知函数对于任意
(
),都有式子
成立(其中
为常数).
(Ⅰ)求函数的解析式;
(Ⅱ)利用函数构造一个数列,方法如下:
对于给定的定义域中的,令
,
,…,
,…
在上述构造过程中,如果(
=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果
不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;
(ⅱ)是否存在一个实数,使得取定义域中的任一值作为
,都可用上述方法构造出一个无穷数列
?若存在,求出
的值;若不存在,请说明理由;
(ⅲ)当时,若
,求数列
的通项公式.
(本小题满分14分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
(本小题满分12分)
某班主任统计本班50名学生放学回家后学习时间的数据,用条形图表示(如图)。
(1)求该班学生每天在家学习时间的平均值;
(2)该班主任用分层抽样方法(按学习时间分五层)选出10个学生谈话,求在学习时间为1个小时的学生中选出的人数;
(3)假设学生每天在家学习时间为18时至23时,已知甲每天连续学习2小时,乙每天连续学习3小时,求19时至20时甲、乙都在学习的概率.
已知函数
(1)求此函数的最小正周期;
(2)求此函数的最大值、最小值,并求使得最大值、最小值时x的集合;
(3)用五点描图法画出此函数的图像。
(本小题满分14分)已知函数,
是常数.
(Ⅰ) 证明曲线在点
的切线经过
轴上一个定点;
(Ⅱ) 若对
恒成立,求
的取值范围;
(参考公式:)
(Ⅲ)讨论函数的单调区间.
(本小题满分14分)
已知函数,数列
满足
.
(Ⅰ)求数列的通项公式
;
(Ⅱ)求;
(Ⅲ)求证: